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Spin-type model for interacting agents with memory

Y. Kamp
Département d’Inge´nierie Informatique, Universite´ Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

~Received 19 January 2000!

This paper presents a model and a solution method to investigate the emergence of self-organization in
populations where interaction between members is combined with individual memory of previous behavior.
The Markov model is second order to accommodate an extended memory range including the previous as well
as the next-to-previous time instant. The proposed solution method leads to a set of recurrence relations
between the present and previous macrostates of the system and the equilibrium distribution of the population
is then obtained as the stable fixed points of these recurrences. The approach applies to a category of interac-
tion mechanisms and is illustrated here on a simple example showing how memory allocation may affect the
emergence of a phase transition in the collective behavior of the population.

PACS number~s!: 02.50.Ga, 05.65.1b, 05.70.Fh, 64.60.Ht
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I. INTRODUCTION

Self-organization of populations is expected to emerge
a result of elementary interactions between individuals.
ten, the agents are memoryless and the evolution of the
tem to the next state is exclusively governed by interacti
between members: past history then plays no explicit role
the self-organization process. The purpose of the presen
per is to provide a model and a method to analyze h
self-organization is affected when the usual interaction
tween agents is combined with individual interference
each agent with its own past. The impact of the past is in
duced via a memory urging each agent to repeat its ea
behavior. In a first attempt along this line@1#, memory was
limited to the immediately preceding instant and, moreov
a simplified model was used specifying directly the proba
ity of entire time trajectories of the population. Here, in co
trast, a two-step memory range is considered, including
the next-to-previous instant, and the system is now mode
by a Markov chain, which seems more realistic since it st
closer to the step by step evolution of the population. T
model and the accompanying method of resolution prese
here are to some extent generic in that they apply to a
egory of interaction mechanisms specified below. To illu
trate how they work in practice, they will be applied in Se
III to a classical example.

Section II presents the second-order Markov chain mo
combining the interaction between agents with an exten
memory component, prompting each individual to reprodu
its behavior over the two preceding instants. For large po
lations, this Markov model induces a recurrence relation
tween past and present collective behavior and the equ
rium distribution is then given by the stable fixed points
the recurrence. The model and its recurrence solution
illustrated in Sec. III by a simple situation where the inte
action between agents consists in tandem recruitment.

II. THE MARKOV MODEL
AND EQUILIBRIUM DISTRIBUTION

Consider a population where the agents can be in on
two different states, labeledA andB. Let n be the size of the
PRE 621063-651X/2000/62~2!/1725~4!/$15.00
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population andx its fraction in stateA. The state of each
individual j is denoted by a binary variablesj

t indicating in
which state it is at timet, with sj

t51 for stateA and sj
t5

21 for stateB. The state or configuration of a generation
time t is given at the microscopic level by the binary vect
st5@s1

t ,s2
t , . . . ,sn

t # and at the macroscopic or collectiv
level by the fractionxt of that generation in stateA with

xt5
1

2
1

1

2n (
j 51

n

sj
t . ~1!

The evolution of the population results from a combinati
of two distinct mechanisms: interaction between agents
the same generation and an interaction along the time ax
each individual with its own past via an elementary form
memory. The first of these interactions~i.e., that between
agents! is represented by an energy functionE(x) depending
on the fractionx of the population in stateA. For the time
being, no further information about this energy function
needed to explain the principle of the approach develo
below. Application of the technique to a specific proble
requires, of course, the detailed expression ofE(x), as will
be given in the example of Sec. III.

To this interaction within the same generation, we add
effect of an individual memory extending over two tim
steps. For given configurations at the previous and next
previous instantsst andst21, the evolution of the population
to its next configurationst11 is modeled by the second-orde
Markov chain

P~st11ust,st21!5expS 2E~xt11!1b1(
j 51

n

sj
t11sj

t

1b2(
j 51

n

sj
t11sj

t21D Y Z~st,st21!,

~2!

where normalization is realized by the partition function
1725 ©2000 The American Physical Society
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Z~st,st21!5 (
$sj

t11
561%

expS 2E~xt11!1b1(
j 51

n

sj
t11sj

t

1b2(
j 51

n

sj
t11sj

t21D . ~3!

Interaction within a generation is accounted for by the fac
exp@(2E(xt11)# which represents the fitness of the new ge
eration st11 with respect to this mechanism. The facto
exp(b1(sj

t11sj
t) and exp(b2(sj

t11sj
t21) represent the conserva

tive behavior induced by memory since their effect is to g
higher probability to the next generationst11, where the in-
dividuals show greater coherence with their choices at
previous and next-to-previous instants. The relative imp
of this conservative attitude is represented by the posi
memory weightsb1 andb2.

The central question is, of course, to find the equilibriu
distribution reached by the Markov model~2! as t→`. Let
us briefly outline the method to obtain this.

Closer examination of the partition function~3! will re-
veal that, in the thermodynamic limit of large population si
n→`, the transition probability~2! has a dominating contri
bution to the effect that, for given configurations at timet
and t21, it produces a next generation with adeterministic
value of the fractionxt11 in stateA. As expected, this frac
tion xt11 depends only on the fractionsxt ,xt21 of the two
previous generationsst, st21 and on their correlationyt,t21.
It will turn out that these quantities are indeed related by
equation of the form

f~xt11 ,xt ,xt21 ,yt,t21!50, ~4!

from which the value ofxt11 can be computed. In order the
to complement the macrostate description at timet11, all
we need is an updating equation for the correlationyt11,t ,
which in fact will take the form

c~yt11,t ,xt11 ,xt ,xt21 ,yt,t21!50. ~5!

The equilibrium values of fraction and correlation reach
by the Markov chain~2! are then the stable fixed points o
the second-order nonlinear recurrences~4! and~5!. This gen-
eral outline of the approach will now be worked out in deta

Although by itself the partition function~3! is of no im-
portance here, we shall nevertheless apply the techniq
that are routinely used for its evaluation because, in so do
we shall find what we are looking for, i.e., the determinis
values of fraction and correlation where the mass of the tr
sition probability~2! is concentrated.

In order to calculate the trace in the right hand side of E
~3!, the exponent is linearized with respect to thesj

t11 via a
Dirac transformation@2,3#. As a result, the partition function
can be rewritten as

Z~st,st21!5~2p i !21E
0

1E
a2 i`

a1 i`

3exp@2n f~xt11 ,z,b1 ,b2!#dxt11 ,dz, ~6!

where
r
-

e
ct
e

n

d

.

es
g,

n-

.

f (xt11 ,z,b1 ,b2)5
1

n
E(xt11)2

z

2n
(122xt11)

2
1

n (
j 51

n

lnF2 coshS z

2n
1b1sj

t1b2sj
t21DG.

~7!

For large population size (n→`), we can apply steepes
descent integration@4,5# to Eq. ~6!, which yields the saddle
point equations defining the fractionxt11 in stateA where
the probability mass of Eq.~2! is concentrated,

z52E8~xt11!, ~8!

~2xt1121!5
1

n (
j 51

n

tanhS z

2n
1b1sj

t1b2sj
t21D . ~9!

From Eq.~3!, one also recognizes that the correlationyt11,t
with the previous generation, i.e., the average
(1/n)( j 51

n sj
t11sj

t across all configurations$sj
t11%, can be

computed asyt11,t5(1/n)(]/]b1)ln Z(st,st21). In view of
Eqs.~6! and ~7! this yields

yt11,t5
1

n (
j 51

n

tanhS z

2n
1b1sj

t1b2sj
t21D sj

t . ~10!

The frequency of occurrence of the four sign patterns
(sj

t ,sj
t21) can easily be expressed in terms of the fractio

xt ,xt21 and the correlationyt,t21 of the generationsst and
st21. Hence, Eqs.~9! and ~10! can be rewritten as

4Xt115~Xt1Xt21111yt,t21!
z1BS

11zBS
2~Xt1Xt2121

2yt,t21!
z2BS

12zBS
1~Xt2Xt21112yt,t21!

z1BD

11zBD

2~Xt2Xt21211yt,t21!
z2BD

12zBD
, ~11!

4yt11,t5~Xt1Xt21111yt,t21!
z1BS

11zBS
1~Xt1Xt2121

2yt,t21!
z2BS

12zBS
1~Xt2Xt21112yt,t21!

z1BD

11zBD

1~Xt2Xt21211yt,t21!
z2BD

12zBD
, ~12!

with

BS5tanh~b11b2!, BD5tanh~b12b2!, z5tanhS z

2nD ,

~13!

and where we have introduced the change of variable

Xt115~2xt1121!, uXt11u<1 ~14!

suggested by the left hand side of Eq.~9!. Elimination ofz in
Eqs. ~11!, ~12! via Eqs. ~8! and ~13! yields the recurrence
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relations Eqs.~4!, ~5!. Putting therext115xt5xt215x and
yt11,t5yt,t215y, one obtains the fixed point equations pr
viding the macroscopic observables of the states at equ
rium. Stability of the fixed points can be verified by a firs
order perturbation analysis.

III. APPLICATION TO TANDEM RECRUITMENT

Let us now illustrate the approach presented so far
applying it to the case where the interaction energyE(x)
between agents of the same generation is the Hamiltonia
the well known tandem recruitment in an ant colony forag
at two equivalent sources~see, e.g.,@6# and the reference
therein!. At each time step, an individual is selected, and
can switch to the opposite source, either spontaneously
a probabilitye ~inconstancy! or because it is recruited with
probability (12d) ~persuasiveness! when meeting a fellow
companion feeding there. As such, tandem recruitment le
to an equilibrium distribution at the microscopic level
configurationsrs5exp@2H(x)#/Z, where the Hamiltonian is
given by

H~x!52n@~h1x!ln~h1x!1~h112x!ln~h112x!#
~15!

with h5e/(12d) @1,7#. Since the number of configuration
having the same fractionx is (nx

n ), the equilibrium distribu-
tion at the macroscopic level of the fractions isrx5(nx

n )rs .
For largen, the latter distribution has a narrow peak atx
51/2, meaning that, when tandem recruitment is the o
interaction, large populations show equal concentration
the sources, whatever the values of inconstancye and per-
suasiveness (12d).

Taking now expression~15! as the energy functionE(x)
in the Markov chain~2!, it turns out that Eq.~8! becomes

Xt115H tanh~z/2n! ~16!

with

H5112h. ~17!

Using this equation to eliminatez5tanh(z/2n) from Eqs.
~11! and ~12! and putting

j t5Xt /H ~18!

yields the relevant recurrence relations~4!,~5! for the case
considered here.

For simplicity, let us first examine in detail the caseb2
50 where memory is restricted to the immediate past. P
ting then

B5BS5BD5tanhb1 , ~19!

the recurrence relation~4! becomes

HB2j t11
3 2HBj t11

2 j t1~12H2B2!j t111HBj t50.
~20!

As could be expected, a first fixed point is located atj*
50 which means, in view of Eqs.~18! and~14!, x* 5 1

2 , i.e.,
equal repartition of the population over the two food sourc
b-

y

of

t
ith

ds

y
at

t-

s.

A first-order perturbation analysis of Eq.~20! around this
fixed point shows that it is stable ifB,H21. Beyond the
critical value

B̃5H21, ~21!

a phase transition sets in and the recurrence equation~20! has
then two stable symmetrical fixed points

ĵ656A11B2H

HB
, ~22!

which corresponds to a selective preference for one or
other of the sources,x̂15(11H ĵ1)/2. 1

2 and x̂25(1
1H ĵ2)/2, 1

2 , depending on the initial conditions in whic
the population was started. In view of the definitio
~17!,~19! of H andB, the equal repartition between sources
maintained if tanhb1,2e/(12d), i.e., as long as the memor
weightb1 is low compared to the ratio of inconstancye over
persuasiveness (12d). The memory threshold beyond whic
symmetry is broken becomes smaller when inconstanc
low and persuasiveness is high.

A similar discussion can be given for the two-ste
memory caseb2.0, which includes also the effect of cor
relation with the next-to-previous generationst21 in the
Markov chain~2!. Straightforward calculations show that th
recurrence equations~11!,~12! lead to an odd polynomia
fixed point equation of degree 9 inj. The equal repartition
fixed point solutionj* 50 exists and is stable as long asBS

stays below the critical value

B̃S5
~H21!~21BD!1BD

2

~H1BD11!
.0. ~23!

Beyond this value, a phase transition develops where
fixed point equation has two solutions, corresponding ag
to a selective concentration of the population at one or
other of the two sources. For fixed value ofH, representing
the effect of recruitment, the critical relation~23! is repre-
sented by a curve in theBS ,BD plane ~see Fig. 1!, its rel-
evant portion lying between the straight linesBD56BS and
BS51. The equal repartition solution (j* 50) is stable in
the region to the left of the curve and becomes unstable w
BS.B̃S , where the phase transition sets in and selec
concentration appears. Figure 1 displays a set of such cu
for different values ofH: beyondH54, no phase transition
is possible, whatever the values of the memory parame
BS andBD .

The sumb11b2, or equivalentlyBS5tanh(b11b2), can
be considered as a measure of the total memory weigh
tributed to the past. For givenH, Fig. 1 shows that the
threshold valueB̃S for a phase transition has a minimu
~marked by a circle! with coordinates

B̃S min54AH2~H13!, B̃D min5A4H2~H11!.
~24!

The value ofB̃S min gives the minimum total memory weigh
b11b2 required to trigger the phase transition. Interesting
since B̃D min is clearly negative,b2 is then larger thanb1,
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meaning that a phase transition at this point requires a st
ger memory weight for the distant (st21) than for the recent
past (st). The locus ofB̃S min , B̃D min drawn in dashed lines
shows thatB̃D min becomes more and more negative asH
increases. In other words, large values ofH, i.e., high incon-
stancye and small persuasiveness (12d) in the recruitment
process, require that more emphasis should be put on

FIG. 1. The dotted lines show the critical relation~23! between
system parametersH5112e/(12d), BS5tanh(b11b2), and BD

5tanh(b12b2). The dashed line is the locus ofB̃S min , B̃D min .
n-

he

correlation with the next-to-previous statest21 in order to
achieve phase transition with the minimum total memo
weight b11b2.

The evolution of the fractionxt of the population at
sourceA has been averaged over 200 different simulations
the Markov chain~2!. The results show that, after 250 tim
steps, this average stabilizes around a constant value^x&
within small residual fluctuations due to the finite populati
size, and provide an empirical proof that the system
reached equilibrium. For two such experiments, conduc
below and above threshold~23!, the values of̂ x& are com-
pared in Table I against the theoretical valuesx* 50.5 and
x̂1 obtained by numerical solution of the fixed point equ
tion. The results are seen to agree well.

TABLE I. Comparison between the values predicted by t
theory and the equilibrium fraction̂x& of the population at source
A averaged over 200 simulations. Recruitment parameterH51.4
@h50.2 in Eq.~17!# and population sizen5300.

^x& Theoretical
BS BD ~simulation! value

Below threshold,BS,B̃S

0.3 0.1 0.4990 x* 50.5
(60.03)

Above threshold,BS.B̃S

0.5 0.2 0.8304 x̂150.8370
(60.01)
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