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Spin-type model for interacting agents with memory
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This paper presents a model and a solution method to investigate the emergence of self-organization in
populations where interaction between members is combined with individual memory of previous behavior.
The Markov model is second order to accommodate an extended memory range including the previous as well
as the next-to-previous time instant. The proposed solution method leads to a set of recurrence relations
between the present and previous macrostates of the system and the equilibrium distribution of the population
is then obtained as the stable fixed points of these recurrences. The approach applies to a category of interac-
tion mechanisms and is illustrated here on a simple example showing how memory allocation may affect the
emergence of a phase transition in the collective behavior of the population.

PACS numbgs): 02.50.Ga, 05.65:b, 05.70.Fh, 64.60.Ht

[. INTRODUCTION population andx its fraction in stateA. The state of each
individual j is denoted by a binary variab@ indicating in
Self-organization of populations is expected to emerge aghich state it is at time, with s}zl for stateA and s}z
a result of elementary interactions between individuals. Of-—1 for stateB. The state or configuration of a generation at
ten, the agents are memoryless and the evolution of the sysme t is given at the microscopic level by the binary vector
tem to the next state is exclusively governed by interactiong'=[s! s, ... s!] and at the macroscopic or collective
between members: past history then plays no explicit role iffeve| by the fractiorx, of that generation in stata with
the self-organization process. The purpose of the present pa-
per is to provide a model and a method to analyze how
self-organization is affected when the usual interaction be-
tween agents is combined with individual interference of
each agent with its own past. The impact of the past is intro-
duced via a memory urging each agent to repeat its earlier
behavior. In a first attempt along this lifi¢], memory was The evolution of the population results from a combination
limited to the immediately preceding instant and, moreoverof two distinct mechanisms: interaction between agents of
a simplified model was used specifying directly the probabil-the same generation and an interaction along the time axis of
ity of entire time trajectories of the population. Here, in con-each individual with its own past via an elementary form of
trast, a two-step memory range is considered, including alsgnemory. The first of these interactiorfise., that between
the next-to-previous instant, and the system is now modeledgentsis represented by an energy functi(x) depending
by a Markov chain, which seems more realistic since it stay®n the fractionx of the population in staté. For the time
closer to the step by step evolution of the population. Thédeing, no further information about this energy function is
model and the accompanying method of resolution presenteteeded to explain the principle of the approach developed
here are to some extent generic in that they apply to a cabelow. Application of the technique to a specific problem
egory of interaction mechanisms specified below. To illus-requires, of course, the detailed expressior(f), as will
trate how they work in practice, they will be applied in Sec.be given in the example of Sec. IIl.

[l to a classical example. To this interaction within the same generation, we add the
Section Il presents the second-order Markov chain modeg¢ffect of an individual memory extending over two time
combining the interaction between agents with an extende@teps. For given configurations at the previous and next-to-
memory component, prompting each individual to reproduceprevious instants' ands'~*, the evolution of the population
its behavior over the two preceding instants. For large poputo its next configuratios'** is modeled by the second-order

lations, this Markov model induces a recurrence relation beMarkov chain

tween past and present collective behavior and the equilib-

rium distribution is then given by the stable fixed points of n

the recurrence. The model and its recurrence solution are P(St+1|styst—1):exp( _E(Xt+1)+ﬁ121 s}”s}
=

illustrated in Sec. Il by a simple situation where the inter-
action between agents consists in tandem recruitment. N
+B22, s / Z(s's'h,
Il. THE MARKOV MODEL =1
AND EQUILIBRIUM DISTRIBUTION (2)

—+

n
Xi=

N| =

S - (1)

2I’]j1

Consider a population where the agents can be in one of
two different states, labele® andB. Let n be the size of the where normalization is realized by the partition function
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]=

n 2 cosr(z—gn +BiS+ ﬁzgllﬂ.

0
Interaction within a generation is accounted for by the factorF | | |
exf (—E(x. 1)] which represents the fitness of the new gen-'°" 'argé popu ation sizent-x), we can apply steepest
eration s'*! with respect to this mechanism. The factorsdescent integratiopd, 5] to Eq. (6), which yields the saddle

exp(ﬂ@#“s}) and expﬁzis}“s}’l) represent the conserva- point equations defining the fraction,, in state A where

tive behavior induced by memory since their effect is to givethe probability mass of Eq2) is concentrated,

higher probability to the next generatish !, where the in- {=—E' (X+1), (8)
dividuals show greater coherence with their choices at the

previous and next-to-previous instants. The relative impact 10

of this conservative attitude is represented by the positive (2% 11— 1)=— 2 I-( +B15 + ,823t oo
memory weights8, and B,. NS

The central question is, of course, to find the equilibrium
distribution reached by the Markov mod@) ast—c. Let
us briefly outline the method to obtain this.

Closer examination of the partition functid@) will re-
veal that, in the thermodynamic limit of large population size
n—oo, the transition probability2) has a dominating contri-
bution to the effect that, for given configurations at titne
andt—1, it produces a next generation withdaterministic yt+lt:£ > tanr‘(£+,815?+,825t-1 st. (10
value of the fractiorx, ; in stateA. As expected, this frac- N 2n ) J '

tion x;, ; depends only on the fractiong,x;_, of the two ) )
previous generations!, st~ ! and on their correlatiom ,_;. The frequency of occurrence of the four sign patterns in

n
+B2,Zl s}”s}_l). (3)

From Eg.(3), one also recognizes that the correlatign;
with the previous generation, i.e., the average of
(1n)=]_;si™*s; across all conf|gurat|0n$s”1} can be
computed asy;s1.= (1) (9/3B1)InZ(s,s~ 1) In view of
Egs.(6) and(7) this yields

It will turn out that these quantities are indeed related by arSj»S; ') can easily be expressed in terms of the fractions
equation of the form X¢,X{—1 and the correlatiory, ,, of the generations' and
st 1. Hence, Eqs(9) and(10) can be rewritten as
A (X1, X Xe-1,Yr,1-1) =0, (4)
4X X+ X, +1+ X+ X 1
from which the value ok, ; can be computed. In order then "% =Xt Xy Yo l)1+ZBE (Xt X1 ™
to complement the macrostate description at timel, all 72— By J+B
we need is an updating equation for the correlatyn, ;, Yot (X = X+ 1— ) A
which in fact will take the form IR TN (X=X Yoev1578,
=0 5 Z— BA
P(Yer10 X+ 1. %0 Xe-1,Yt,t-1) = 0. 5 —(Xi=Xeo1— 14y 1)1 2B, (11
The equilibrium values of fraction and correlation reached
by the Markov chain(2) are then the stable fixed points of
the second-order nonlinear recurrené®sand(5). This gen- A= Ot Xt Ty 1)1+ Bz Xt X1
eral outline of the approach will now be worked out in detail.

Although by itself the partition function3d) is of no im- Vi) z—By FOG= Xt LY ) z+By
portance here, we shall nevertheless apply the techniques L1178, 1 L1714 7B,
that are routinely used for its evaluation because, in so doing, 5
we shall find what we are looking for, i.e., the deterministic (X, —X 1+ Z7Ba 12

) . (Xe=Xi-1= 1+ Y- 7——=r (12
values of fraction and correlation where the mass of the tran- 1-zB,

sition probability(2) is concentrated.

In order to calculate the trace in the right hand side of Eq_.
(3), the exponent is linearized with respect to Ek}él via a ¢
Dirac transformatiori2,3]. As a result, the partition function By =tanh(3,+8,), Bj=tanh3;—8,), z=tanr(—) ,
can be rewritten as 2N

with

(13

Z(st,s“l):(Zwi)‘lflfwiw and where we have introduced the change of variable
0 .

Xer1=(2x1— 1), [Xipq|=1 (14

xexp[_nf(XH—l!ngl!ﬁZ)]dXH-lrdg! (6)
suggested by the left hand side of E@). Elimination ofzin
where Egs. (11), (12) via Egs.(8) and (13) yields the recurrence
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relations Eqs(4), (5). Putting therex;, ;=x;=%;_;=x and A first-order perturbation analysis of E¢20) around this
Yi+1:=Ytt—1=Y, one obtains the fixed point equations pro- fixed point shows that it is stable B<H—1. Beyond the
viding the macroscopic observables of the states at equilikeritical value

rium. Stability of the fixed points can be verified by a first- ~

order perturbation analysis. B=H-1, (21

IIl. APPLICATION TO TANDEM RECRUITMENT a phase transition sets in and the recurrence equ@®mas
then two stable symmetrical fixed points
Let us now illustrate the approach presented so far by

applying it to the case where the interaction enekjfx) - 1+B—-H
between agents of the same generation is the Hamiltonian of =\~ (22)
the well known tandem recruitment in an ant colony foraging
at two equivalent source(see, e.g.[6] and the references which corresponds to a selective preference for one or the
therelr)._ At each time step, an individual is selected, and '_thher of the sourcesx,=(1+HZ,)/2>% and x_=(1
can switch to the opposite source, either spontaneously with 1 . L - . .
a probability e (inconstancy or because it is recruited with +HE)2< 2 depending on the |n|t|_al conditions in .W.h.'Ch
probability (1— &) (persuasivenessvhen meeting a fellow the population was started. In view of the def|n|t|0n_s
companion feeding there. As such, tandem recruitment Ieao(ém'(lg) of H andB, the equal rgpartmon between sources is
to an equilibrium distribution at the microscopic level of ma_lntalneq if tani, <2¢/(1-9), i.e., as Ior_lg as the memory
configurations. = ex —H(x)]/Z, where the Hamiltonian is welghtﬂ_l is low compared to the ratio of mconstaneyover.
given by persuasiveness (16). The memory threshold bgyond which _
symmetry is broken becomes smaller when inconstancy is
H(X)=—n[(n+X)IN(p+X)+ (p+1—x)In(p+1—X)] low and persuasiveness is high.
(15) A similar discussion can be given for the two-step
memory case3,>0, which includes also the effect of cor-
with »=€/(1— 8) [1,7]. Since the number of configurations relation with the next-to-previous generatigh ! in the
having the same fractior is (), the equilibrium distribu- ~ Markov chain(2). Straightforward calculations show that the
tion at the macroscopic level of the fractionspis=(,})ps.  recurrence equation€ll),(12) lead to an odd polynomial
For largen, the latter distribution has a narrow peakxat fixed point equation of degree 9 i The equal repartition
=1/2, meaning that, when tandem recruitment is the onlyfixed point solution{* =0 exists and is stable as long Bs
interaction, large populations show equal concentrations gtays below the critical value
the sources, whatever the values of inconstan@nd per- )
suasiveness (4 9). ~  (H=1)(2+B,)+Bj}
Taking now expressiofil5) as the energy functiok(x) 2T (H+B,+1)
in the Markov chain(2), it turns out that Eq(8) becomes

>0. (23

Beyond this value, a phase transition develops where the

Xi+1=H tanh({/2n) (16)  fixed point equation has two solutions, corresponding again

_ to a selective concentration of the population at one or the
with other of the two sources. For fixed value ldf representing
He142 17 the effect of recruitment, the critical relatid@3) is repre-

- sented by a curve in thBs ,B, plane(see Fig. 1, its rel-
evant portion lying between the straight linBg= =By and
By=1. The equal repartition solutioré{=0) is stable in
the region to the left of the curve and becomes unstable when

&=X/H (18 By>Bs, where the phase transition sets in and selective

concentration appears. Figure 1 displays a set of such curves

yields the relevant recurrence relatiof#,(5) for the case for different values oH: beyondH =4, no phase transition

considered here. is possible, whatever the values of the memory parameters

For simplicity, let us first examine in detail the ca8g¢ By andB, .

=0 where memory is restricted to the immediate past. Put- The sumg;+ 8,, or equivalentlyBs =tanh(3;+,), can

ting then be considered as a measure of the total memory weight at-
tributed to the past. For giveh, Fig. 1 shows that the

threshold valueBs for a phase transition has a minimum
(marked by a circlewith coordinates

Using this equation to eliminate=tanh/2n) from Egs.
(11) and(12) and putting

B=Bs=B,=tanhg, (19
the recurrence relatio®) becomes

HB?& , —HBE&, &+ (1-H-B?) & 1+ HB§=0. By mn=4VH-(H+3), Bymn=V4H-(H+1).
(20 24

As could be expected, a first fixed point is locatedgat ~ The value ofBy iy gives the minimum total memory weight
=0 which means, in view of Eq$18) and(14), x* =1, i.e., ,31+,83 required to trigger the phase transition. Interestingly,
equal repartition of the population over the two food sourcessince B, i, IS Clearly negative, is then larger tharB,,
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FIG. 1. The dotted lines show the critical relati#8) between
system parametend =1+ 2¢/(1—6), By=tanh(3;+,), and B,
=tanh(3,— B,). The dashed line is the locus B min, Ba min-
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TABLE |. Comparison between the values predicted by the
theory and the equilibrium fractiofx) of the population at source
A averaged over 200 simulations. Recruitment paramidterl.4
[#=0.2 in Eq.(17)] and population size = 300.

(x) Theoretical
By Ba (simulation value
Below thresholdBy <By
0.3 0.1 0.4990 x*=0.5
(+0.03)
Above thresholdBy > By
0.5 0.2 0.8304 X, =0.8370
(+0.01)

correlation with the next-to-previous stask ! in order to
achieve phase transition with the minimum total memory
weight 8, + B5.

The evolution of the fractionx; of the population at
sourceA has been averaged over 200 different simulations of
the Markov chain(2). The results show that, after 250 time
steps, this average stabilizes around a constant valie

meaning that a phase transition at this point requires a stroRgjthin small residual fluctuations due to the finite population

ger memory weight for the distans'('!) than for the recent
past §'). The locus ofBs min, Bamin drawn in dashed lines

shows thatB, , becomes more and more negative Hs
increases. In other words, large valuedfi.e., high incon-
stancye and small persuasiveness<5) in the recruitment

size, and provide an empirical proof that the system has
reached equilibrium. For two such experiments, conducted
below and above threshol@3), the values ofx) are com-
pared in Table | against the theoretical valx&s=0.5 and

X. obtained by numerical solution of the fixed point equa-

process, require that more emphasis should be put on th@n. The results are seen to agree well.
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